Metamath Proof Explorer


Theorem syl3an1

Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)

Ref Expression
Hypotheses syl3an1.1
|- ( ph -> ps )
syl3an1.2
|- ( ( ps /\ ch /\ th ) -> ta )
Assertion syl3an1
|- ( ( ph /\ ch /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 syl3an1.1
 |-  ( ph -> ps )
2 syl3an1.2
 |-  ( ( ps /\ ch /\ th ) -> ta )
3 1 3anim1i
 |-  ( ( ph /\ ch /\ th ) -> ( ps /\ ch /\ th ) )
4 3 2 syl
 |-  ( ( ph /\ ch /\ th ) -> ta )