Metamath Proof Explorer


Theorem syl8

Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994) (Proof shortened by Wolf Lammen, 3-Aug-2012)

Ref Expression
Hypotheses syl8.1
|- ( ph -> ( ps -> ( ch -> th ) ) )
syl8.2
|- ( th -> ta )
Assertion syl8
|- ( ph -> ( ps -> ( ch -> ta ) ) )

Proof

Step Hyp Ref Expression
1 syl8.1
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
2 syl8.2
 |-  ( th -> ta )
3 2 a1i
 |-  ( ph -> ( th -> ta ) )
4 1 3 syl6d
 |-  ( ph -> ( ps -> ( ch -> ta ) ) )