Metamath Proof Explorer


Theorem sylan

Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 22-Nov-2012)

Ref Expression
Hypotheses sylan.1
|- ( ph -> ps )
sylan.2
|- ( ( ps /\ ch ) -> th )
Assertion sylan
|- ( ( ph /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 sylan.1
 |-  ( ph -> ps )
2 sylan.2
 |-  ( ( ps /\ ch ) -> th )
3 2 expcom
 |-  ( ch -> ( ps -> th ) )
4 1 3 mpan9
 |-  ( ( ph /\ ch ) -> th )