Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 22-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylan.1 | |- ( ph -> ps ) |
|
sylan.2 | |- ( ( ps /\ ch ) -> th ) |
||
Assertion | sylan | |- ( ( ph /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan.1 | |- ( ph -> ps ) |
|
2 | sylan.2 | |- ( ( ps /\ ch ) -> th ) |
|
3 | 2 | expcom | |- ( ch -> ( ps -> th ) ) |
4 | 1 3 | mpan9 | |- ( ( ph /\ ch ) -> th ) |