Description: A syllogism inference. (Contributed by NM, 9-Apr-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylanr2.1 | |- ( ph -> th ) |
|
sylanr2.2 | |- ( ( ps /\ ( ch /\ th ) ) -> ta ) |
||
Assertion | sylanr2 | |- ( ( ps /\ ( ch /\ ph ) ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanr2.1 | |- ( ph -> th ) |
|
2 | sylanr2.2 | |- ( ( ps /\ ( ch /\ th ) ) -> ta ) |
|
3 | 1 | anim2i | |- ( ( ch /\ ph ) -> ( ch /\ th ) ) |
4 | 3 2 | sylan2 | |- ( ( ps /\ ( ch /\ ph ) ) -> ta ) |