Metamath Proof Explorer


Theorem sylanr2

Description: A syllogism inference. (Contributed by NM, 9-Apr-2005)

Ref Expression
Hypotheses sylanr2.1
|- ( ph -> th )
sylanr2.2
|- ( ( ps /\ ( ch /\ th ) ) -> ta )
Assertion sylanr2
|- ( ( ps /\ ( ch /\ ph ) ) -> ta )

Proof

Step Hyp Ref Expression
1 sylanr2.1
 |-  ( ph -> th )
2 sylanr2.2
 |-  ( ( ps /\ ( ch /\ th ) ) -> ta )
3 1 anim2i
 |-  ( ( ch /\ ph ) -> ( ch /\ th ) )
4 3 2 sylan2
 |-  ( ( ps /\ ( ch /\ ph ) ) -> ta )