Metamath Proof Explorer


Theorem syli

Description: Syllogism inference with common nested antecedent. (Contributed by NM, 4-Nov-2004)

Ref Expression
Hypotheses syli.1
|- ( ps -> ( ph -> ch ) )
syli.2
|- ( ch -> ( ph -> th ) )
Assertion syli
|- ( ps -> ( ph -> th ) )

Proof

Step Hyp Ref Expression
1 syli.1
 |-  ( ps -> ( ph -> ch ) )
2 syli.2
 |-  ( ch -> ( ph -> th ) )
3 2 com12
 |-  ( ph -> ( ch -> th ) )
4 1 3 sylcom
 |-  ( ps -> ( ph -> th ) )