Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylsyld.1 | |- ( ph -> ps ) |
|
sylsyld.2 | |- ( ph -> ( ch -> th ) ) |
||
sylsyld.3 | |- ( ps -> ( th -> ta ) ) |
||
Assertion | sylsyld | |- ( ph -> ( ch -> ta ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylsyld.1 | |- ( ph -> ps ) |
|
2 | sylsyld.2 | |- ( ph -> ( ch -> th ) ) |
|
3 | sylsyld.3 | |- ( ps -> ( th -> ta ) ) |
|
4 | 1 3 | syl | |- ( ph -> ( th -> ta ) ) |
5 | 2 4 | syld | |- ( ph -> ( ch -> ta ) ) |