Metamath Proof Explorer


Theorem sylsyld

Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011)

Ref Expression
Hypotheses sylsyld.1
|- ( ph -> ps )
sylsyld.2
|- ( ph -> ( ch -> th ) )
sylsyld.3
|- ( ps -> ( th -> ta ) )
Assertion sylsyld
|- ( ph -> ( ch -> ta ) )

Proof

Step Hyp Ref Expression
1 sylsyld.1
 |-  ( ph -> ps )
2 sylsyld.2
 |-  ( ph -> ( ch -> th ) )
3 sylsyld.3
 |-  ( ps -> ( th -> ta ) )
4 1 3 syl
 |-  ( ph -> ( th -> ta ) )
5 2 4 syld
 |-  ( ph -> ( ch -> ta ) )