Description: A T_1 space is R_0. That is, the Kolmogorov quotient of a T_1 space is also T_1 (because they are homeomorphic). (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | t1r0 | |- ( J e. Fre -> ( KQ ` J ) e. Fre ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1t0 | |- ( J e. Fre -> J e. Kol2 ) |
|
| 2 | kqhmph | |- ( J e. Kol2 <-> J ~= ( KQ ` J ) ) |
|
| 3 | 1 2 | sylib | |- ( J e. Fre -> J ~= ( KQ ` J ) ) |
| 4 | t1hmph | |- ( J ~= ( KQ ` J ) -> ( J e. Fre -> ( KQ ` J ) e. Fre ) ) |
|
| 5 | 3 4 | mpcom | |- ( J e. Fre -> ( KQ ` J ) e. Fre ) |