Description: The metric of a constructed metric space. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tmsbas.k | |- K = ( toMetSp ` D ) |
|
| Assertion | tmsds | |- ( D e. ( *Met ` X ) -> D = ( dist ` K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsbas.k | |- K = ( toMetSp ` D ) |
|
| 2 | eqid | |- { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. } = { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. } |
|
| 3 | 2 1 | tmslem | |- ( D e. ( *Met ` X ) -> ( X = ( Base ` K ) /\ D = ( dist ` K ) /\ ( MetOpen ` D ) = ( TopOpen ` K ) ) ) |
| 4 | 3 | simp2d | |- ( D e. ( *Met ` X ) -> D = ( dist ` K ) ) |