| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tngval.t |
|- T = ( G toNrmGrp N ) |
| 2 |
|
tngval.m |
|- .- = ( -g ` G ) |
| 3 |
|
tngval.d |
|- D = ( N o. .- ) |
| 4 |
|
tngval.j |
|- J = ( MetOpen ` D ) |
| 5 |
|
elex |
|- ( G e. V -> G e. _V ) |
| 6 |
|
elex |
|- ( N e. W -> N e. _V ) |
| 7 |
|
simpl |
|- ( ( g = G /\ f = N ) -> g = G ) |
| 8 |
|
simpr |
|- ( ( g = G /\ f = N ) -> f = N ) |
| 9 |
7
|
fveq2d |
|- ( ( g = G /\ f = N ) -> ( -g ` g ) = ( -g ` G ) ) |
| 10 |
9 2
|
eqtr4di |
|- ( ( g = G /\ f = N ) -> ( -g ` g ) = .- ) |
| 11 |
8 10
|
coeq12d |
|- ( ( g = G /\ f = N ) -> ( f o. ( -g ` g ) ) = ( N o. .- ) ) |
| 12 |
11 3
|
eqtr4di |
|- ( ( g = G /\ f = N ) -> ( f o. ( -g ` g ) ) = D ) |
| 13 |
12
|
opeq2d |
|- ( ( g = G /\ f = N ) -> <. ( dist ` ndx ) , ( f o. ( -g ` g ) ) >. = <. ( dist ` ndx ) , D >. ) |
| 14 |
7 13
|
oveq12d |
|- ( ( g = G /\ f = N ) -> ( g sSet <. ( dist ` ndx ) , ( f o. ( -g ` g ) ) >. ) = ( G sSet <. ( dist ` ndx ) , D >. ) ) |
| 15 |
12
|
fveq2d |
|- ( ( g = G /\ f = N ) -> ( MetOpen ` ( f o. ( -g ` g ) ) ) = ( MetOpen ` D ) ) |
| 16 |
15 4
|
eqtr4di |
|- ( ( g = G /\ f = N ) -> ( MetOpen ` ( f o. ( -g ` g ) ) ) = J ) |
| 17 |
16
|
opeq2d |
|- ( ( g = G /\ f = N ) -> <. ( TopSet ` ndx ) , ( MetOpen ` ( f o. ( -g ` g ) ) ) >. = <. ( TopSet ` ndx ) , J >. ) |
| 18 |
14 17
|
oveq12d |
|- ( ( g = G /\ f = N ) -> ( ( g sSet <. ( dist ` ndx ) , ( f o. ( -g ` g ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( f o. ( -g ` g ) ) ) >. ) = ( ( G sSet <. ( dist ` ndx ) , D >. ) sSet <. ( TopSet ` ndx ) , J >. ) ) |
| 19 |
|
df-tng |
|- toNrmGrp = ( g e. _V , f e. _V |-> ( ( g sSet <. ( dist ` ndx ) , ( f o. ( -g ` g ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( f o. ( -g ` g ) ) ) >. ) ) |
| 20 |
|
ovex |
|- ( ( G sSet <. ( dist ` ndx ) , D >. ) sSet <. ( TopSet ` ndx ) , J >. ) e. _V |
| 21 |
18 19 20
|
ovmpoa |
|- ( ( G e. _V /\ N e. _V ) -> ( G toNrmGrp N ) = ( ( G sSet <. ( dist ` ndx ) , D >. ) sSet <. ( TopSet ` ndx ) , J >. ) ) |
| 22 |
5 6 21
|
syl2an |
|- ( ( G e. V /\ N e. W ) -> ( G toNrmGrp N ) = ( ( G sSet <. ( dist ` ndx ) , D >. ) sSet <. ( TopSet ` ndx ) , J >. ) ) |
| 23 |
1 22
|
eqtrid |
|- ( ( G e. V /\ N e. W ) -> T = ( ( G sSet <. ( dist ` ndx ) , D >. ) sSet <. ( TopSet ` ndx ) , J >. ) ) |