Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 1open.1 | |- X = U. J |
|
Assertion | topopn | |- ( J e. Top -> X e. J ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1open.1 | |- X = U. J |
|
2 | ssid | |- J C_ J |
|
3 | uniopn | |- ( ( J e. Top /\ J C_ J ) -> U. J e. J ) |
|
4 | 2 3 | mpan2 | |- ( J e. Top -> U. J e. J ) |
5 | 1 4 | eqeltrid | |- ( J e. Top -> X e. J ) |