Metamath Proof Explorer


Theorem tprot

Description: Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011)

Ref Expression
Assertion tprot
|- { A , B , C } = { B , C , A }

Proof

Step Hyp Ref Expression
1 3orrot
 |-  ( ( x = A \/ x = B \/ x = C ) <-> ( x = B \/ x = C \/ x = A ) )
2 1 abbii
 |-  { x | ( x = A \/ x = B \/ x = C ) } = { x | ( x = B \/ x = C \/ x = A ) }
3 dftp2
 |-  { A , B , C } = { x | ( x = A \/ x = B \/ x = C ) }
4 dftp2
 |-  { B , C , A } = { x | ( x = B \/ x = C \/ x = A ) }
5 2 3 4 3eqtr4i
 |-  { A , B , C } = { B , C , A }