Metamath Proof Explorer


Theorem trgtps

Description: A topological ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion trgtps
|- ( R e. TopRing -> R e. TopSp )

Proof

Step Hyp Ref Expression
1 trgtgp
 |-  ( R e. TopRing -> R e. TopGrp )
2 tgptps
 |-  ( R e. TopGrp -> R e. TopSp )
3 1 2 syl
 |-  ( R e. TopRing -> R e. TopSp )