Description: Functionality of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | trkgstr.w | |- W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } |
|
| Assertion | trkgstr | |- W Struct <. 1 , ; 1 6 >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trkgstr.w | |- W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } |
|
| 2 | 1nn | |- 1 e. NN |
|
| 3 | basendx | |- ( Base ` ndx ) = 1 |
|
| 4 | 2nn0 | |- 2 e. NN0 |
|
| 5 | 1nn0 | |- 1 e. NN0 |
|
| 6 | 1lt10 | |- 1 < ; 1 0 |
|
| 7 | 2 4 5 6 | declti | |- 1 < ; 1 2 |
| 8 | 2nn | |- 2 e. NN |
|
| 9 | 5 8 | decnncl | |- ; 1 2 e. NN |
| 10 | dsndx | |- ( dist ` ndx ) = ; 1 2 |
|
| 11 | 6nn | |- 6 e. NN |
|
| 12 | 2lt6 | |- 2 < 6 |
|
| 13 | 5 4 11 12 | declt | |- ; 1 2 < ; 1 6 |
| 14 | 5 11 | decnncl | |- ; 1 6 e. NN |
| 15 | itvndx | |- ( Itv ` ndx ) = ; 1 6 |
|
| 16 | 2 3 7 9 10 13 14 15 | strle3 | |- { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } Struct <. 1 , ; 1 6 >. |
| 17 | 1 16 | eqbrtri | |- W Struct <. 1 , ; 1 6 >. |