Metamath Proof Explorer


Theorem tsktrss

Description: A transitive element of a Tarski class is a part of the class. JFM CLASSES2 th. 8. (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tsktrss
|- ( ( T e. Tarski /\ Tr A /\ A e. T ) -> A C_ T )

Proof

Step Hyp Ref Expression
1 simp2
 |-  ( ( T e. Tarski /\ Tr A /\ A e. T ) -> Tr A )
2 dftr4
 |-  ( Tr A <-> A C_ ~P A )
3 1 2 sylib
 |-  ( ( T e. Tarski /\ Tr A /\ A e. T ) -> A C_ ~P A )
4 tskpwss
 |-  ( ( T e. Tarski /\ A e. T ) -> ~P A C_ T )
5 4 3adant2
 |-  ( ( T e. Tarski /\ Tr A /\ A e. T ) -> ~P A C_ T )
6 3 5 sstrd
 |-  ( ( T e. Tarski /\ Tr A /\ A e. T ) -> A C_ T )