Description: A transitive element of a Tarski class is a part of the class. JFM CLASSES2 th. 8. (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 20-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | tsktrss | |- ( ( T e. Tarski /\ Tr A /\ A e. T ) -> A C_ T ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 | |- ( ( T e. Tarski /\ Tr A /\ A e. T ) -> Tr A ) |
|
2 | dftr4 | |- ( Tr A <-> A C_ ~P A ) |
|
3 | 1 2 | sylib | |- ( ( T e. Tarski /\ Tr A /\ A e. T ) -> A C_ ~P A ) |
4 | tskpwss | |- ( ( T e. Tarski /\ A e. T ) -> ~P A C_ T ) |
|
5 | 4 | 3adant2 | |- ( ( T e. Tarski /\ Tr A /\ A e. T ) -> ~P A C_ T ) |
6 | 3 5 | sstrd | |- ( ( T e. Tarski /\ Tr A /\ A e. T ) -> A C_ T ) |