Metamath Proof Explorer


Theorem tsor2

Description: A Tseitin axiom for logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018)

Ref Expression
Assertion tsor2
|- ( th -> ( -. ph \/ ( ph \/ ps ) ) )

Proof

Step Hyp Ref Expression
1 orc
 |-  ( ph -> ( ph \/ ps ) )
2 1 imori
 |-  ( -. ph \/ ( ph \/ ps ) )
3 2 a1i
 |-  ( th -> ( -. ph \/ ( ph \/ ps ) ) )