Description: In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uhgredgiedgb.i | |- I = ( iEdg ` G ) |
|
| Assertion | uhgredgiedgb | |- ( G e. UHGraph -> ( E e. ( Edg ` G ) <-> E. x e. dom I E = ( I ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgredgiedgb.i | |- I = ( iEdg ` G ) |
|
| 2 | 1 | uhgrfun | |- ( G e. UHGraph -> Fun I ) |
| 3 | 1 | edgiedgb | |- ( Fun I -> ( E e. ( Edg ` G ) <-> E. x e. dom I E = ( I ` x ) ) ) |
| 4 | 2 3 | syl | |- ( G e. UHGraph -> ( E e. ( Edg ` G ) <-> E. x e. dom I E = ( I ` x ) ) ) |