Metamath Proof Explorer


Theorem umgr2v2evtxel

Description: A vertex in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020)

Ref Expression
Hypothesis umgr2v2evtx.g
|- G = <. V , { <. 0 , { A , B } >. , <. 1 , { A , B } >. } >.
Assertion umgr2v2evtxel
|- ( ( V e. W /\ A e. V ) -> A e. ( Vtx ` G ) )

Proof

Step Hyp Ref Expression
1 umgr2v2evtx.g
 |-  G = <. V , { <. 0 , { A , B } >. , <. 1 , { A , B } >. } >.
2 1 umgr2v2evtx
 |-  ( V e. W -> ( Vtx ` G ) = V )
3 eqcom
 |-  ( ( Vtx ` G ) = V <-> V = ( Vtx ` G ) )
4 3 biimpi
 |-  ( ( Vtx ` G ) = V -> V = ( Vtx ` G ) )
5 4 eleq2d
 |-  ( ( Vtx ` G ) = V -> ( A e. V <-> A e. ( Vtx ` G ) ) )
6 5 biimpcd
 |-  ( A e. V -> ( ( Vtx ` G ) = V -> A e. ( Vtx ` G ) ) )
7 2 6 mpan9
 |-  ( ( V e. W /\ A e. V ) -> A e. ( Vtx ` G ) )