Description: A unionizing deduction. (Contributed by Alan Sare, 28-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | un01.1 | |- (. (. T. ,. ph ). ->. ps ). |
|
| Assertion | un01 | |- (. ph ->. ps ). |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un01.1 | |- (. (. T. ,. ph ). ->. ps ). |
|
| 2 | tru | |- T. |
|
| 3 | 2 | jctl | |- ( ph -> ( T. /\ ph ) ) |
| 4 | 1 | dfvd2ani | |- ( ( T. /\ ph ) -> ps ) |
| 5 | 3 4 | syl | |- ( ph -> ps ) |
| 6 | 5 | dfvd1ir | |- (. ph ->. ps ). |