Metamath Proof Explorer


Theorem uniexg

Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent A e. V instead of A e.V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable V . (Contributed by NM, 25-Nov-1994)

Ref Expression
Assertion uniexg
|- ( A e. V -> U. A e. _V )

Proof

Step Hyp Ref Expression
1 unieq
 |-  ( x = A -> U. x = U. A )
2 1 eleq1d
 |-  ( x = A -> ( U. x e. _V <-> U. A e. _V ) )
3 vuniex
 |-  U. x e. _V
4 2 3 vtoclg
 |-  ( A e. V -> U. A e. _V )