Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent A e. V instead of A e.V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable V . (Contributed by NM, 25-Nov-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | uniexg | |- ( A e. V -> U. A e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq | |- ( x = A -> U. x = U. A ) |
|
2 | 1 | eleq1d | |- ( x = A -> ( U. x e. _V <-> U. A e. _V ) ) |
3 | vuniex | |- U. x e. _V |
|
4 | 2 3 | vtoclg | |- ( A e. V -> U. A e. _V ) |