Metamath Proof Explorer


Theorem uniiun

Description: Class union in terms of indexed union. Definition in Stoll p. 43. (Contributed by NM, 28-Jun-1998)

Ref Expression
Assertion uniiun
|- U. A = U_ x e. A x

Proof

Step Hyp Ref Expression
1 dfuni2
 |-  U. A = { y | E. x e. A y e. x }
2 df-iun
 |-  U_ x e. A x = { y | E. x e. A y e. x }
3 1 2 eqtr4i
 |-  U. A = U_ x e. A x