Metamath Proof Explorer


Theorem unir1regs

Description: The cumulative hierarchy of sets covers the universe. This version of unir1 replaces setind with setindregs . (Contributed by BTernaryTau, 30-Dec-2025)

Ref Expression
Assertion unir1regs
|- U. ( R1 " On ) = _V

Proof

Step Hyp Ref Expression
1 setindregs
 |-  ( A. x ( x C_ U. ( R1 " On ) -> x e. U. ( R1 " On ) ) -> U. ( R1 " On ) = _V )
2 vex
 |-  x e. _V
3 2 r1elss
 |-  ( x e. U. ( R1 " On ) <-> x C_ U. ( R1 " On ) )
4 3 biimpri
 |-  ( x C_ U. ( R1 " On ) -> x e. U. ( R1 " On ) )
5 1 4 mpg
 |-  U. ( R1 " On ) = _V