| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgruhgr |
|- ( G e. USGraph -> G e. UHGraph ) |
| 2 |
|
uhgr0vb |
|- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph <-> ( iEdg ` G ) = (/) ) ) |
| 3 |
1 2
|
imbitrid |
|- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) |
| 4 |
|
simpl |
|- ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> G e. W ) |
| 5 |
|
simpr |
|- ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> ( iEdg ` G ) = (/) ) |
| 6 |
4 5
|
usgr0e |
|- ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> G e. USGraph ) |
| 7 |
6
|
ex |
|- ( G e. W -> ( ( iEdg ` G ) = (/) -> G e. USGraph ) ) |
| 8 |
7
|
adantr |
|- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( ( iEdg ` G ) = (/) -> G e. USGraph ) ) |
| 9 |
3 8
|
impbid |
|- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) |