| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrf1o.e |
|- E = ( iEdg ` G ) |
| 2 |
|
usgrss.v |
|- V = ( Vtx ` G ) |
| 3 |
|
ssrab2 |
|- { x e. ~P V | ( # ` x ) = 2 } C_ ~P V |
| 4 |
2 1
|
usgrfs |
|- ( G e. USGraph -> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) |
| 5 |
|
f1f |
|- ( E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) |
| 6 |
4 5
|
syl |
|- ( G e. USGraph -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) |
| 7 |
6
|
ffvelcdmda |
|- ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } ) |
| 8 |
3 7
|
sselid |
|- ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. ~P V ) |
| 9 |
8
|
elpwid |
|- ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) C_ V ) |