Metamath Proof Explorer


Theorem wl-mps

Description: Replacing a nested consequent. A sort of modus ponens in antecedent position. (Contributed by Wolf Lammen, 20-Sep-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses wl-mps.1
|- ( ph -> ( ps -> ch ) )
wl-mps.2
|- ( ( ph -> ch ) -> th )
Assertion wl-mps
|- ( ( ph -> ps ) -> th )

Proof

Step Hyp Ref Expression
1 wl-mps.1
 |-  ( ph -> ( ps -> ch ) )
2 wl-mps.2
 |-  ( ( ph -> ch ) -> th )
3 1 a2i
 |-  ( ( ph -> ps ) -> ( ph -> ch ) )
4 3 2 syl
 |-  ( ( ph -> ps ) -> th )