Metamath Proof Explorer


Theorem wl-sbal2

Description: Move quantifier in and out of substitution. Revised to remove a distinct variable constraint. (Contributed by NM, 2-Jan-2002) Proof is based on wl-sbalnae now. See also sbal2 . (Revised by Wolf Lammen, 25-Jul-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion wl-sbal2
|- ( -. A. x x = y -> ( [ z / y ] A. x ph <-> A. x [ z / y ] ph ) )

Proof

Step Hyp Ref Expression
1 naev
 |-  ( -. A. x x = y -> -. A. x x = z )
2 wl-sbalnae
 |-  ( ( -. A. x x = y /\ -. A. x x = z ) -> ( [ z / y ] A. x ph <-> A. x [ z / y ] ph ) )
3 1 2 mpdan
 |-  ( -. A. x x = y -> ( [ z / y ] A. x ph <-> A. x [ z / y ] ph ) )