Step |
Hyp |
Ref |
Expression |
1 |
|
wlkcomp.v |
|- V = ( Vtx ` G ) |
2 |
|
wlkcomp.i |
|- I = ( iEdg ` G ) |
3 |
|
wlkcomp.1 |
|- F = ( 1st ` W ) |
4 |
|
wlkcomp.2 |
|- P = ( 2nd ` W ) |
5 |
|
elfvex |
|- ( W e. ( Walks ` G ) -> G e. _V ) |
6 |
|
wlkcpr |
|- ( W e. ( Walks ` G ) <-> ( 1st ` W ) ( Walks ` G ) ( 2nd ` W ) ) |
7 |
|
wlkvv |
|- ( ( 1st ` W ) ( Walks ` G ) ( 2nd ` W ) -> W e. ( _V X. _V ) ) |
8 |
6 7
|
sylbi |
|- ( W e. ( Walks ` G ) -> W e. ( _V X. _V ) ) |
9 |
1 2 3 4
|
wlkcomp |
|- ( ( G e. _V /\ W e. ( _V X. _V ) ) -> ( W e. ( Walks ` G ) <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
10 |
9
|
biimpcd |
|- ( W e. ( Walks ` G ) -> ( ( G e. _V /\ W e. ( _V X. _V ) ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
11 |
5 8 10
|
mp2and |
|- ( W e. ( Walks ` G ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |