Metamath Proof Explorer


Theorem xpcco2nd

Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpcco1st.t
|- T = ( C Xc. D )
xpcco1st.b
|- B = ( Base ` T )
xpcco1st.k
|- K = ( Hom ` T )
xpcco1st.o
|- O = ( comp ` T )
xpcco1st.x
|- ( ph -> X e. B )
xpcco1st.y
|- ( ph -> Y e. B )
xpcco1st.z
|- ( ph -> Z e. B )
xpcco1st.f
|- ( ph -> F e. ( X K Y ) )
xpcco1st.g
|- ( ph -> G e. ( Y K Z ) )
xpcco2nd.1
|- .x. = ( comp ` D )
Assertion xpcco2nd
|- ( ph -> ( 2nd ` ( G ( <. X , Y >. O Z ) F ) ) = ( ( 2nd ` G ) ( <. ( 2nd ` X ) , ( 2nd ` Y ) >. .x. ( 2nd ` Z ) ) ( 2nd ` F ) ) )

Proof

Step Hyp Ref Expression
1 xpcco1st.t
 |-  T = ( C Xc. D )
2 xpcco1st.b
 |-  B = ( Base ` T )
3 xpcco1st.k
 |-  K = ( Hom ` T )
4 xpcco1st.o
 |-  O = ( comp ` T )
5 xpcco1st.x
 |-  ( ph -> X e. B )
6 xpcco1st.y
 |-  ( ph -> Y e. B )
7 xpcco1st.z
 |-  ( ph -> Z e. B )
8 xpcco1st.f
 |-  ( ph -> F e. ( X K Y ) )
9 xpcco1st.g
 |-  ( ph -> G e. ( Y K Z ) )
10 xpcco2nd.1
 |-  .x. = ( comp ` D )
11 eqid
 |-  ( comp ` C ) = ( comp ` C )
12 1 2 3 11 10 4 5 6 7 8 9 xpcco
 |-  ( ph -> ( G ( <. X , Y >. O Z ) F ) = <. ( ( 1st ` G ) ( <. ( 1st ` X ) , ( 1st ` Y ) >. ( comp ` C ) ( 1st ` Z ) ) ( 1st ` F ) ) , ( ( 2nd ` G ) ( <. ( 2nd ` X ) , ( 2nd ` Y ) >. .x. ( 2nd ` Z ) ) ( 2nd ` F ) ) >. )
13 ovex
 |-  ( ( 1st ` G ) ( <. ( 1st ` X ) , ( 1st ` Y ) >. ( comp ` C ) ( 1st ` Z ) ) ( 1st ` F ) ) e. _V
14 ovex
 |-  ( ( 2nd ` G ) ( <. ( 2nd ` X ) , ( 2nd ` Y ) >. .x. ( 2nd ` Z ) ) ( 2nd ` F ) ) e. _V
15 13 14 op2ndd
 |-  ( ( G ( <. X , Y >. O Z ) F ) = <. ( ( 1st ` G ) ( <. ( 1st ` X ) , ( 1st ` Y ) >. ( comp ` C ) ( 1st ` Z ) ) ( 1st ` F ) ) , ( ( 2nd ` G ) ( <. ( 2nd ` X ) , ( 2nd ` Y ) >. .x. ( 2nd ` Z ) ) ( 2nd ` F ) ) >. -> ( 2nd ` ( G ( <. X , Y >. O Z ) F ) ) = ( ( 2nd ` G ) ( <. ( 2nd ` X ) , ( 2nd ` Y ) >. .x. ( 2nd ` Z ) ) ( 2nd ` F ) ) )
16 12 15 syl
 |-  ( ph -> ( 2nd ` ( G ( <. X , Y >. O Z ) F ) ) = ( ( 2nd ` G ) ( <. ( 2nd ` X ) , ( 2nd ` Y ) >. .x. ( 2nd ` Z ) ) ( 2nd ` F ) ) )