Metamath Proof Explorer


Theorem xpeq2

Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994)

Ref Expression
Assertion xpeq2
|- ( A = B -> ( C X. A ) = ( C X. B ) )

Proof

Step Hyp Ref Expression
1 eleq2
 |-  ( A = B -> ( y e. A <-> y e. B ) )
2 1 anbi2d
 |-  ( A = B -> ( ( x e. C /\ y e. A ) <-> ( x e. C /\ y e. B ) ) )
3 2 opabbidv
 |-  ( A = B -> { <. x , y >. | ( x e. C /\ y e. A ) } = { <. x , y >. | ( x e. C /\ y e. B ) } )
4 df-xp
 |-  ( C X. A ) = { <. x , y >. | ( x e. C /\ y e. A ) }
5 df-xp
 |-  ( C X. B ) = { <. x , y >. | ( x e. C /\ y e. B ) }
6 3 4 5 3eqtr4g
 |-  ( A = B -> ( C X. A ) = ( C X. B ) )