Step |
Hyp |
Ref |
Expression |
1 |
|
ax-rrecex |
|- ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A x. x ) = 1 ) |
2 |
|
rexmul |
|- ( ( A e. RR /\ x e. RR ) -> ( A *e x ) = ( A x. x ) ) |
3 |
2
|
eqeq1d |
|- ( ( A e. RR /\ x e. RR ) -> ( ( A *e x ) = 1 <-> ( A x. x ) = 1 ) ) |
4 |
3
|
ex |
|- ( A e. RR -> ( x e. RR -> ( ( A *e x ) = 1 <-> ( A x. x ) = 1 ) ) ) |
5 |
4
|
adantr |
|- ( ( A e. RR /\ A =/= 0 ) -> ( x e. RR -> ( ( A *e x ) = 1 <-> ( A x. x ) = 1 ) ) ) |
6 |
5
|
pm5.32d |
|- ( ( A e. RR /\ A =/= 0 ) -> ( ( x e. RR /\ ( A *e x ) = 1 ) <-> ( x e. RR /\ ( A x. x ) = 1 ) ) ) |
7 |
6
|
rexbidv2 |
|- ( ( A e. RR /\ A =/= 0 ) -> ( E. x e. RR ( A *e x ) = 1 <-> E. x e. RR ( A x. x ) = 1 ) ) |
8 |
1 7
|
mpbird |
|- ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A *e x ) = 1 ) |