Metamath Proof Explorer


Theorem xrecex

Description: Existence of reciprocal of nonzero real number. (Contributed by Thierry Arnoux, 17-Dec-2016)

Ref Expression
Assertion xrecex
|- ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A *e x ) = 1 )

Proof

Step Hyp Ref Expression
1 ax-rrecex
 |-  ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A x. x ) = 1 )
2 rexmul
 |-  ( ( A e. RR /\ x e. RR ) -> ( A *e x ) = ( A x. x ) )
3 2 eqeq1d
 |-  ( ( A e. RR /\ x e. RR ) -> ( ( A *e x ) = 1 <-> ( A x. x ) = 1 ) )
4 3 ex
 |-  ( A e. RR -> ( x e. RR -> ( ( A *e x ) = 1 <-> ( A x. x ) = 1 ) ) )
5 4 adantr
 |-  ( ( A e. RR /\ A =/= 0 ) -> ( x e. RR -> ( ( A *e x ) = 1 <-> ( A x. x ) = 1 ) ) )
6 5 pm5.32d
 |-  ( ( A e. RR /\ A =/= 0 ) -> ( ( x e. RR /\ ( A *e x ) = 1 ) <-> ( x e. RR /\ ( A x. x ) = 1 ) ) )
7 6 rexbidv2
 |-  ( ( A e. RR /\ A =/= 0 ) -> ( E. x e. RR ( A *e x ) = 1 <-> E. x e. RR ( A x. x ) = 1 ) )
8 1 7 mpbird
 |-  ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A *e x ) = 1 )