Metamath Proof Explorer


Theorem xrltne

Description: 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006)

Ref Expression
Assertion xrltne
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B =/= A )

Proof

Step Hyp Ref Expression
1 orc
 |-  ( A < B -> ( A < B \/ B < A ) )
2 xrltso
 |-  < Or RR*
3 sotrieq
 |-  ( ( < Or RR* /\ ( A e. RR* /\ B e. RR* ) ) -> ( A = B <-> -. ( A < B \/ B < A ) ) )
4 2 3 mpan
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> -. ( A < B \/ B < A ) ) )
5 4 necon2abid
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A < B \/ B < A ) <-> A =/= B ) )
6 1 5 syl5ib
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> A =/= B ) )
7 6 3impia
 |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A =/= B )
8 7 necomd
 |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B =/= A )