| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orc |  |-  ( A < B -> ( A < B \/ B < A ) ) | 
						
							| 2 |  | xrltso |  |-  < Or RR* | 
						
							| 3 |  | sotrieq |  |-  ( ( < Or RR* /\ ( A e. RR* /\ B e. RR* ) ) -> ( A = B <-> -. ( A < B \/ B < A ) ) ) | 
						
							| 4 | 2 3 | mpan |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> -. ( A < B \/ B < A ) ) ) | 
						
							| 5 | 4 | necon2abid |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A < B \/ B < A ) <-> A =/= B ) ) | 
						
							| 6 | 1 5 | imbitrid |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> A =/= B ) ) | 
						
							| 7 | 6 | 3impia |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A =/= B ) | 
						
							| 8 | 7 | necomd |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B =/= A ) |