Metamath Proof Explorer


Theorem xrnmnfpnf

Description: An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses xrnmnfpnf.1
|- ( ph -> A e. RR* )
xrnmnfpnf.2
|- ( ph -> -. A e. RR )
xrnmnfpnf.3
|- ( ph -> A =/= -oo )
Assertion xrnmnfpnf
|- ( ph -> A = +oo )

Proof

Step Hyp Ref Expression
1 xrnmnfpnf.1
 |-  ( ph -> A e. RR* )
2 xrnmnfpnf.2
 |-  ( ph -> -. A e. RR )
3 xrnmnfpnf.3
 |-  ( ph -> A =/= -oo )
4 1 3 jca
 |-  ( ph -> ( A e. RR* /\ A =/= -oo ) )
5 xrnemnf
 |-  ( ( A e. RR* /\ A =/= -oo ) <-> ( A e. RR \/ A = +oo ) )
6 4 5 sylib
 |-  ( ph -> ( A e. RR \/ A = +oo ) )
7 pm2.53
 |-  ( ( A e. RR \/ A = +oo ) -> ( -. A e. RR -> A = +oo ) )
8 6 2 7 sylc
 |-  ( ph -> A = +oo )