Metamath Proof Explorer


Theorem zfausab

Description: Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994)

Ref Expression
Hypothesis zfausab.1
|- A e. _V
Assertion zfausab
|- { x | ( x e. A /\ ph ) } e. _V

Proof

Step Hyp Ref Expression
1 zfausab.1
 |-  A e. _V
2 ssab2
 |-  { x | ( x e. A /\ ph ) } C_ A
3 1 2 ssexi
 |-  { x | ( x e. A /\ ph ) } e. _V