Metamath Proof Explorer


Theorem zno

Description: A surreal integer is a surreal. (Contributed by Scott Fenton, 17-May-2025)

Ref Expression
Assertion zno
|- ( A e. ZZ_s -> A e. No )

Proof

Step Hyp Ref Expression
1 zssno
 |-  ZZ_s C_ No
2 1 sseli
 |-  ( A e. ZZ_s -> A e. No )