Metamath Proof Explorer


Theorem zxrd

Description: An integer is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis zxrd.1
|- ( ph -> A e. ZZ )
Assertion zxrd
|- ( ph -> A e. RR* )

Proof

Step Hyp Ref Expression
1 zxrd.1
 |-  ( ph -> A e. ZZ )
2 1 zred
 |-  ( ph -> A e. RR )
3 2 rexrd
 |-  ( ph -> A e. RR* )