Metamath Proof Explorer


Theorem 0dom

Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypothesis 0sdom.1 AV
Assertion 0dom A

Proof

Step Hyp Ref Expression
1 0sdom.1 AV
2 0domg AVA
3 1 2 ax-mp A