Metamath Proof Explorer


Theorem 0domg

Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 26-Apr-2015) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion 0domg AVA

Proof

Step Hyp Ref Expression
1 0ex V
2 f1eq1 f=f:1-1A:1-1A
3 f10 :1-1A
4 1 2 3 ceqsexv2d ff:1-1A
5 brdom2g VAVAff:1-1A
6 1 5 mpan AVAff:1-1A
7 4 6 mpbiri AVA