Metamath Proof Explorer


Theorem brdom2g

Description: Dominance relation. This variation of brdomg does not require the Axiom of Union. (Contributed by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion brdom2g A V B W A B f f : A 1-1 B

Proof

Step Hyp Ref Expression
1 f1eq2 x = A f : x 1-1 y f : A 1-1 y
2 1 exbidv x = A f f : x 1-1 y f f : A 1-1 y
3 f1eq3 y = B f : A 1-1 y f : A 1-1 B
4 3 exbidv y = B f f : A 1-1 y f f : A 1-1 B
5 df-dom = x y | f f : x 1-1 y
6 2 4 5 brabg A V B W A B f f : A 1-1 B