Metamath Proof Explorer


Theorem brdom2g

Description: Dominance relation. This variation of brdomg does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998) Extract from a subproof of brdomg . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion brdom2g AVBWABff:A1-1B

Proof

Step Hyp Ref Expression
1 f1eq2 x=Af:x1-1yf:A1-1y
2 1 exbidv x=Aff:x1-1yff:A1-1y
3 f1eq3 y=Bf:A1-1yf:A1-1B
4 3 exbidv y=Bff:A1-1yff:A1-1B
5 df-dom =xy|ff:x1-1y
6 2 4 5 brabg AVBWABff:A1-1B