Metamath Proof Explorer


Theorem f1eq2

Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1eq2 A=BF:A1-1CF:B1-1C

Proof

Step Hyp Ref Expression
1 feq2 A=BF:ACF:BC
2 1 anbi1d A=BF:ACFunF-1F:BCFunF-1
3 df-f1 F:A1-1CF:ACFunF-1
4 df-f1 F:B1-1CF:BCFunF-1
5 2 3 4 3bitr4g A=BF:A1-1CF:B1-1C