Metamath Proof Explorer


Definition df-f

Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of TakeutiZaring p. 27. F : A --> B can be read as " F is a function from A to B ". For alternate definitions, see dff2 , dff3 , and dff4 . (Contributed by NM, 1-Aug-1994)

Ref Expression
Assertion df-f F:ABFFnAranFB

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF classF
1 cA classA
2 cB classB
3 1 2 0 wf wffF:AB
4 0 1 wfn wffFFnA
5 0 crn classranF
6 5 2 wss wffranFB
7 4 6 wa wffFFnAranFB
8 3 7 wb wffF:ABFFnAranFB