Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
df-fn
Metamath Proof Explorer
Definition df-fn
Description: Define a function with domain. Definition 6.15(1) of TakeutiZaring
p. 27. For alternate definitions, see dffn2 , dffn3 , dffn4 , and
dffn5 . (Contributed by NM , 1-Aug-1994)
Ref
Expression
Assertion
df-fn
⊢ A Fn B ↔ Fun ⁡ A ∧ dom ⁡ A = B
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cA
class A
1
cB
class B
2
0 1
wfn
wff A Fn B
3
0
wfun
wff Fun ⁡ A
4
0
cdm
class dom ⁡ A
5
4 1
wceq
wff dom ⁡ A = B
6
3 5
wa
wff Fun ⁡ A ∧ dom ⁡ A = B
7
2 6
wb
wff A Fn B ↔ Fun ⁡ A ∧ dom ⁡ A = B