Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Power Sets Functions df-fn  
				
		 
		
			
		 
		Definition df-fn  
		Description:   Define a function with domain.  Definition 6.15(1) of TakeutiZaring 
       p. 27.  For alternate definitions, see dffn2  , dffn3  , dffn4  , and
       dffn5  .  (Contributed by NM , 1-Aug-1994) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-fn    ⊢   A  Fn  B    ↔    Fun  ⁡  A    ∧    dom  ⁡  A    =  B          
				 
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cA  class  A    
						
							1 
								
							 
							cB  class  B    
						
							2 
								0  1 
							 
							wfn  wff   A  Fn  B      
						
							3 
								0 
							 
							wfun  wff   Fun  ⁡  A      
						
							4 
								0 
							 
							cdm  class   dom  ⁡  A      
						
							5 
								4  1 
							 
							wceq  wff    dom  ⁡  A    =  B      
						
							6 
								3  5 
							 
							wa  wff    Fun  ⁡  A    ∧    dom  ⁡  A    =  B        
						
							7 
								2  6 
							 
							wb  wff    A  Fn  B    ↔    Fun  ⁡  A    ∧    dom  ⁡  A    =  B