Metamath Proof Explorer


Definition df-fn

Description: Define a function with domain. Definition 6.15(1) of TakeutiZaring p. 27. For alternate definitions, see dffn2 , dffn3 , dffn4 , and dffn5 . (Contributed by NM, 1-Aug-1994)

Ref Expression
Assertion df-fn ( 𝐴 Fn 𝐵 ↔ ( Fun 𝐴 ∧ dom 𝐴 = 𝐵 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cB 𝐵
2 0 1 wfn 𝐴 Fn 𝐵
3 0 wfun Fun 𝐴
4 0 cdm dom 𝐴
5 4 1 wceq dom 𝐴 = 𝐵
6 3 5 wa ( Fun 𝐴 ∧ dom 𝐴 = 𝐵 )
7 2 6 wb ( 𝐴 Fn 𝐵 ↔ ( Fun 𝐴 ∧ dom 𝐴 = 𝐵 ) )