Metamath Proof Explorer


Theorem dffn5

Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion dffn5 FFnAF=xAFx

Proof

Step Hyp Ref Expression
1 fnrel FFnARelF
2 dfrel4v RelFF=xy|xFy
3 1 2 sylib FFnAF=xy|xFy
4 fnbr FFnAxFyxA
5 4 ex FFnAxFyxA
6 5 pm4.71rd FFnAxFyxAxFy
7 eqcom y=FxFx=y
8 fnbrfvb FFnAxAFx=yxFy
9 7 8 bitrid FFnAxAy=FxxFy
10 9 pm5.32da FFnAxAy=FxxAxFy
11 6 10 bitr4d FFnAxFyxAy=Fx
12 11 opabbidv FFnAxy|xFy=xy|xAy=Fx
13 3 12 eqtrd FFnAF=xy|xAy=Fx
14 df-mpt xAFx=xy|xAy=Fx
15 13 14 eqtr4di FFnAF=xAFx
16 fvex FxV
17 eqid xAFx=xAFx
18 16 17 fnmpti xAFxFnA
19 fneq1 F=xAFxFFnAxAFxFnA
20 18 19 mpbiri F=xAFxFFnA
21 15 20 impbii FFnAF=xAFx