Metamath Proof Explorer


Theorem bitrid

Description: A syllogism inference from two biconditionals. (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypotheses bitrid.1 φ ψ
bitrid.2 χ ψ θ
Assertion bitrid χ φ θ

Proof

Step Hyp Ref Expression
1 bitrid.1 φ ψ
2 bitrid.2 χ ψ θ
3 1 a1i χ φ ψ
4 3 2 bitrd χ φ θ