Metamath Proof Explorer


Theorem bitrid

Description: A syllogism inference from two biconditionals. (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypotheses bitrid.1
|- ( ph <-> ps )
bitrid.2
|- ( ch -> ( ps <-> th ) )
Assertion bitrid
|- ( ch -> ( ph <-> th ) )

Proof

Step Hyp Ref Expression
1 bitrid.1
 |-  ( ph <-> ps )
2 bitrid.2
 |-  ( ch -> ( ps <-> th ) )
3 1 a1i
 |-  ( ch -> ( ph <-> ps ) )
4 3 2 bitrd
 |-  ( ch -> ( ph <-> th ) )