Metamath Proof Explorer


Theorem bitrd

Description: Deduction form of bitri . (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 14-Apr-2013)

Ref Expression
Hypotheses bitrd.1
|- ( ph -> ( ps <-> ch ) )
bitrd.2
|- ( ph -> ( ch <-> th ) )
Assertion bitrd
|- ( ph -> ( ps <-> th ) )

Proof

Step Hyp Ref Expression
1 bitrd.1
 |-  ( ph -> ( ps <-> ch ) )
2 bitrd.2
 |-  ( ph -> ( ch <-> th ) )
3 1 pm5.74i
 |-  ( ( ph -> ps ) <-> ( ph -> ch ) )
4 2 pm5.74i
 |-  ( ( ph -> ch ) <-> ( ph -> th ) )
5 3 4 bitri
 |-  ( ( ph -> ps ) <-> ( ph -> th ) )
6 5 pm5.74ri
 |-  ( ph -> ( ps <-> th ) )