Metamath Proof Explorer


Theorem bitri

Description: An inference from transitive law for logical equivalence. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 13-Oct-2012)

Ref Expression
Hypotheses bitri.1
|- ( ph <-> ps )
bitri.2
|- ( ps <-> ch )
Assertion bitri
|- ( ph <-> ch )

Proof

Step Hyp Ref Expression
1 bitri.1
 |-  ( ph <-> ps )
2 bitri.2
 |-  ( ps <-> ch )
3 1 2 sylbb
 |-  ( ph -> ch )
4 1 2 sylbbr
 |-  ( ch -> ph )
5 3 4 impbii
 |-  ( ph <-> ch )