Metamath Proof Explorer


Theorem bitri

Description: An inference from transitive law for logical equivalence. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 13-Oct-2012)

Ref Expression
Hypotheses bitri.1 φψ
bitri.2 ψχ
Assertion bitri φχ

Proof

Step Hyp Ref Expression
1 bitri.1 φψ
2 bitri.2 ψχ
3 1 2 sylbb φχ
4 1 2 sylbbr χφ
5 3 4 impbii φχ