Metamath Proof Explorer


Theorem bitr2i

Description: An inference from transitive law for logical equivalence. (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypotheses bitr2i.1 φψ
bitr2i.2 ψχ
Assertion bitr2i χφ

Proof

Step Hyp Ref Expression
1 bitr2i.1 φψ
2 bitr2i.2 ψχ
3 1 2 bitri φχ
4 3 bicomi χφ