Metamath Proof Explorer


Theorem bitr2i

Description: An inference from transitive law for logical equivalence. (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypotheses bitr2i.1 ( 𝜑𝜓 )
bitr2i.2 ( 𝜓𝜒 )
Assertion bitr2i ( 𝜒𝜑 )

Proof

Step Hyp Ref Expression
1 bitr2i.1 ( 𝜑𝜓 )
2 bitr2i.2 ( 𝜓𝜒 )
3 1 2 bitri ( 𝜑𝜒 )
4 3 bicomi ( 𝜒𝜑 )